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ABSTRACT

Quantifying the value of developers’ code contributions to a soft-
ware project requires more than simply counting lines of code or
commits. We define the development value of code as a combination
of its structural value (the effect of code reuse) and its non-structural
value (the impact on development). We propose techniques to au-
tomatically calculate both components of development value and
combine them using Learning to Rank. Our preliminary empiri-
cal study shows that our analysis yields richer results than those
obtained by human assessment or simple counting methods and
demonstrates the potential of our approach.
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1 INTRODUCTION

Developers contribute code to software project repositories. These
code contributions are typically characterized by simple metrics,
such as the number of commits (NOC) or lines of code (LOC). For ex-
ample, GitHub uses the NOC to rank the developers of a project [13].
Expertise Browser [33], a classic tool for identifying developer ex-
pertise, uses the number of changed LOCs as an indicator. Such
metrics measure the amount of code contributions, rather than their
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value. For example, a function at the core of the application logic is
probably more valuable than an auxiliary script.

There are many use cases in which we need to compare and
recognize the value of different developers’ contributions. While
traditional value-based software engineering [3, 5, 32] focuses on
creating economic value as a way to prioritize resource allocation
and scheduling, other measurements of value may be more relevant
in some of the use cases. One example is that instructors need a tool
with witch to evaluate individual students’ code contributions to
group projects (besides non-code contributions). Such measurement
of code contributions has nothing to do with economic returns. As
a second example, an engineering manager may need a quantita-
tive measurement of team members’ performance. Additionally, for
free and open-source software (FOSS) projects, developers’ con-
tributions heavily influence collaboration, coordination, and lead-
ership [26, 38]. Finally, software engineering researchers observe
development activities per se, but not necessarily their economic
returns. As the above Expertise Browser case shows, a new quanti-
tative tool for the code contributions would help better understand
software development processes.

In this paper, we outline our work on quantifying the value of
code contributions in software development, i.e., the effect on develop-
ment activities of contributed code. In general, code that addresses
a time-consuming development task has a higher value than code
that addresses an easier task; code that saves a huge amount of
other developers’ effort has higher value than code that saves little.
Therefore, we define development value as a quantification of the
development effort embodied in a code contribution and the devel-
opment effort that the code contribution saves other developers.

We factor the development value into structural and non-structural
components. The structural value reflects the effect of the code
structure on development activities: A function that is called by
many callers reduces the development effort of those callers and
thus tends to be of high value. Based on this observation, we design
DevRank, a variant of PageRank, to derive development value from
the function call graph. On the other hand, not all development
value is reflected in code structure. Through interviewing three
seasoned open-source developers, we find that developers judge
code value by classifying the impact of commits. Leveraging natural
language processing (NLP) and machine learning (ML) techniques,
we explore the possibility of automating the commit classification
by commit messages that usually describe what impact the code
makes. Finally, we train a learning-to-rank (L2R) model to find the
best combination of the structural and non-structural values to
generate an overall score of development value.
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2 DEVELOPMENT VALUE

We postulate that a code contribution carries two kinds of value. The
structural value reflects its role in the structure of the program (§2.1),
and the non-structural value reflects the impact on the project in a
way that code structure alone does not (§2.2). This section describes
how we compute both kinds of value, and how we combine them
to get an overall value for a code contribution (§2.3).

2.1 Structural Value: DevRank

In most imperative programming languages, a function (procedure,
method) is a basic unit of the program structure. The development
value of a function is based not only on the effort spent creating the
function, but also on the effort saved when other code calls the func-
tion. The structural component of the development value (structural
value) is captured by our graph-based algorithm DevRank, which is
an extension of the original PageRank algorithm.

PageRank [7] is the basis for Google Web Search and finds appli-
cations in various domains [15]. The algorithm runs over a directed
graph of web pages. It hypothesizes a web surfer with an assumed
visiting behavior and iteratively calculates the probability that the
surfer visits each page. The meaning of the calculated probabilities
depends on the behavior of the surfer. In the original PageRank, the
surfer engages in two random actions: (1) upon arriving at a page,
with probability «, the surfer randomly selects a link on that page
and visits the linked page; and (2) with probability 1 — «, the surfer
teleports to a random page and continues. The damping factor « is
a fixed probability chosen in advance. Based on the behavior, the
resulting probability reflects how likely a page is to be visited ac-
cording to the link structure of pages. Intuitively, what is reflected
is the popularity or importance of a page on the web.

To compute each function’s structural value, we construct a
static function-call graph of the code. Although program execution
never randomly jumps to an irrelevant function as in PageRank,
we find that PageRank is a surprisingly convenient model for char-
acterizing code development. We interpret random teleportation
as navigating the development activities of the code, rather than
execution behavior.

In DevRank, the hypothetical “surfer” becomes a development
sniffer, whose task is to detect development effort. We assume
that the development effort spent on a function is revealed by the
total LOCs of all changes that result in the function across the de-
velopment history. We believe it can more precisely quantify the
development effort than counting the LOCs at the latest snapshot.
Based on this assumption, the behavior of the sniffer is constructed
in the following way: (1) Upon arriving at a function, with probabil-
ity a, the sniffer visits one of the called functions with probability
proportional to the development efforts of those functions. As we
regard calling a function as a way to save development effort on
the part of the caller, this behavior reflects how much development
effort is saved by coding a call to each function. (2) With probability
1 — a, the sniffer teleports to a random function with a probability
proportional to the development effort of the function. Such tele-
portation can be explained as the sniffer’s search for development
effort. Overall, we can see that the resulting probability of the snif-
fer showing up on each function reflects the development effort
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spent on the function and that the function saves other developers.
Therefore, it reflects the development value of a function.

After computing DevRank scores for functions, we can distrib-
ute development values of functions to commits, and further to
developers. This is done by allocating the value of a function to all
commits that change the function, proportional to the size of their
changes (i.e., the number of changed LOCs), and then assigning
the value of commits to their corresponding authors. In this way,
developers receive credits for their contributions.

2.2 Non-Structural Value: Impact Coding

Not all development value is embodied in the code structure. A
code contribution also has a non-structural impact on the whole
project, e.g., fixing a bug, making an improvement, creating a new
feature, or maintaining a document.

Our proposal for measuring non-structural value is inspired by
how human developers assess a code contribution’s non-structural
impact on the project. We interviewed three open source developers:
an author of a popular Twitter client and two FreeBSD developers,
each with over ten years of experiences. Specifically, we asked
them to give a free-form answer to the following question: what
procedure would you use to compare the values of commits in
a project? Despite the vast answer space, all three interviewees
mentioned that they would classify commits by examining what
kinds of impacts commits have on the project. One of the FreeBSD
developers even gave a comprehensive hierarchy of commit-value:
“fix for build errors > fix for severe non-build errors > important new
features > fix for severe speculative errors > fix for minor errors >
regular new features > cosmetic errors > source code hygiene.”

Therefore, the impact type of a commit is an important feature
for determining its non-structural value. We introduce impact cod-
ing to capture such non-structural value. Impact coding classifies a
commit according to a predefined set of impact categories. Previous
work defines related categories of development activities [17, 23],
but focuses on only certain aspects of software development (e.g.,
maintenance). To construct a set of impact categories that com-
prehensively represent non-structural value, we plan to conduct
a large-scale survey to let developers freely express the reasons
for their comparative commit values, then analyze their responses
following the grounded theory approach [14]. This approach will
inductively generate impact categories during the labeling of data.

Impact-based commit classification has the potential to be au-
tomated because many communications among developers are
computer-mediated [35, 41]. Each commit is associated with a
context implicitly built by development activities, which includes
natural-language descriptions of the commit in a bug/issue tracking
system, a pull request or a commit message [10, 39]. These natural-
language descriptions provide an adequate corpus for constructing
a machine learning model to infer the impact category of a commit.
We refer to this approach as context learning and give a concrete
example in §3.3.

2.3 Combining DevRank and Impact Coding

As structural and non-structural analyses capture two fundamental
aspects of development value, we combine the two to calculate an
overall development value. Suppose a commit has structural value
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d and non-structural value t. Our goal is to find a function ¢ that
combines them: v = ¢(d, t). In our solution, d is the DevRank score,
and t is a one-hot vector encoding of the commit category.

If we had reliable ground truth—that is, a large set of commits
with known overall development value—we could pose the task as
an optimization problem: from the data set, determine the weight
vector w in

oan=w' |l

so that the average error between the true value and ¢(d, t) of every
commit is minimized.

Unfortunately, developers find it very hard to directly score code
values in a free-form manner, e.g., giving one commit 0.17 and
another 0.06, so we lack the reliable ground truth in that form.
Instead, we can ask developers to compare commit pairs of the same
author and identify which of each pair is more valuable. It is a much
easier question to answer and eliminates the influence of personal
interests and interpersonal relationships. Based on this “pairwise
ground truth,” we can use a learning to rank (L2R) algorithm [8, 11,
16] to determine ¢. We use d and t as the input features to a Ranking
SVM [16]. After training, we take the weight vector of the SVM
as w in ¢(d, t). This method allows us to combine the structural
and non-structural value scores for each commit to determine its
overall development value score.

3 PRELIMINARY EXPERIMENTS

Our current experiments make three points: a case study in the
education setting shows the limitation of human assessment and
motivates our measurement; the different results of DevRank and
LOC-counting show the effects of capturing structural value; and
the performance of mainstream ML models in classifying non-
structural impacts reveals both opportunities and challenges.

To collect empirical evidence, we assemble two data sets: (1) course
surveys of students assessing teammates’ contributions in a soft-
ware engineering course; and (2) over 250k issues and associated

commit messages collected from Apache Software Foundation projects,

for training the context learning models.

3.1 Human Assessment Is Not Reliable

Developers may assess code value through their understanding
of the code and their impressions of other developers. However,
those factors are biased by social factors and personal interests.
To better understand the validity of human assessment, we sur-
veyed 10 teams of students (58 in total) from an undergraduate
software engineering course at UC Berkeley. During an 8-week
project timespan, individual students were asked to evaluate their
teammates’ code contributions every 2 weeks by assigning team
members (including themselves) shares normalized to total 100%.
We kept statistics of each student’s self-assigned share and shares
received from teammates. First, we see that most students receive
very different amounts of shares from their teammates, showing the
subjectivity in human value assessment. For every pair of students
on a team, we computed the Pearson’s r coefficient between the
shares they assign to other students. On average, the Pearson’s
r is only 0.52, indicating a moderate level of agreement among
students. Second, students’ self-assigned shares are 18.36% more
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Figure 1: Ratios between a function’s DevRank score and its
LOC. Here, y = 1 means that both scores for a function are
identical.

than their peer-assigned shares, on average, suggesting that their
self-assessment is subjectively more optimistic than their peer as-
sessment. This reflects the influence of personal interests.

3.2 LOCs Incompletely Capture Value

To observe the effects of DevRank, we evaluated the code contribu-
tions in the Linux kernel code at the function level using DevRank
and LOC, respectively, and compared their results.

We first extracted LOC information for each function by pars-
ing the source code of release v4.14 using a static analysis tool,
srcML [25]. We collected 458,054 functions from 45,959 source files.
Then we computed DevRank values for all functions by analyzing
5,000 commits on the master branch before release v4.14. We ex-
perimented with multiple o values and empirically set « to 0.5 for
most of the following analysis.

If we rank functions by their LOCs and DevRank values, respec-
tively, the generated rankings are very different: the Kendall’s 7
between these two rankings is 0.64, indicating only a moderate
level of agreement. We further explore DevRank’s effects on dif-
ferent functions by computing the ratio between each function’s
DevRank value and normalized number of LOCs. Figure 1 shows
this ratio for all functions in descending order. A positive log-scale
ratio suggests that the function’s DevRank value is larger than its
normalized number of LOCs. We observe from Figure 1 that De-
vRank amplifies the contributions of a small portion of functions,
which account for 20.9% of the total number of functions.

One limitation of the DevRank algorithm is that it may over-
estimate the contributions of some simple utility functions, includ-
ing getters and setters, because of their high in-degrees in the call
graph. For example, check_memory_region is ranked among the
most valuable functions under the mm (memory management) di-
rectory. To avoid this issue, we filtered out these simple utility
functions by setting a threshold of the number of LOCs (20 by
default) before ranking.

Table 1 shows the five most valuable functions under the mm
directory by DevRank and LOC counting after filtering out the
simple utility functions. We look into the top functions, slob_free
and shrink_page_list, on the two rankings, respectively, and
showcase how DevRank better models the development value of
code. Note that shrink_page_list reclaims page frames, while
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Table 1: Most valuable functions under the mm directory

# Function File
1 slob_free mm/slob.c
é 2 mempool_alloc mm/mempool.c
=13 dma_pool_free mm/dmapool.c
A4 kasan_slab_free mm/kasan/kasan.c
5 mempool_free mm/mempool.c
1 shrink_page_list mm/vmscan.c
o 2 shmem_getpage_gfp mm/shmem.c
o |3 __vma_adjust mm/mmap.c
! balance_dirty_pages mm/page-writeback.c
5 | __alloc_pages_slowpath mm/page_alloc.c

slob_free reclaims SLOB blocks. Although shrink_page_list
has a larger LOC number than slob_free, both have to check
and deal with many cases in their algorithms. If we only compare
LOCs, shrink_page_list seems likely to embody more develop-
ment value. However, slob_free is called about 3,500 times' more
than shrink_page_list. Every time slob_free is called, the slob
allocator saves developers effort in dealing with memory allocation.
Saved effort is also a form of development value we should consider.
Moreover, as the memory allocator is so frequently used, many ef-
forts have been spent on improving its efficiency in Linux [6, 21, 27].
We believe that taking into account the call structure, as DevRank
does, gives a fairer evaluation of slob_free’s development value.

3.3 Automatic Impact Classification

We leveraged the JIRA issue database” used by many Apache Soft-
ware Foundation projects. In the database, developers label issues
with predefined types (feature, improvement, bug fix, maintenance).
We collected 267,446 issues and their associated commit messages
from 139 Apache projects having the most issues.

We explored three main NLP/ML models: bag-of-words (BoW) [20],
a convolutional neural network (CNN) [22], and a recurrent neural
network (RNN). For each model, we experimented with two types of
inputs: the commit message title and the full complete message. We
adopted ConceptNet Numberbatch (CN) word embeddings [37]. For
all issue types, we show F1 scores in Table 2. We can see that CNN
and RNN have comparable performance but outperform the bag-
of-words model. The best accuracy that our models achieve among
all classes is 78.0%, using RNN on full commit messages. Moreover,
using commit messages constantly outperforms using commit titles
in all models, since messages contain more information than titles.

The results show that some categories of commits are easier to
infer than others. For example, the best F1 score for classifying Bug
commits is 0.873 (the RNN model using commit messages), while
the best F1 score for classifying maintenance commits is only 0.459
(the CNN model using commit messages). A possible reason is that
those categories have different numbers of commits in the data set:
Bug fixes are dominant, so training for them is more effective.

As a first step, our analysis shows the possibility of automatically
classifying commit impact solely by using the commit message and
a neural network model. Overall, identification of Bug fixes and
Improvements can be regarded as usable for DevRank, but that of
less-represented categories is still too low. As part of our future

!Most of the calls are through kfree.
Zhttps://issues.apache.org/
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Table 2: Performance (F1 score) of three NLP + ML models
for context learning

Maint. Feature Improv. Bug | Accuracy

# commits 410 1482 13648 29261
BoW-title 0.287 0.339 0.631  0.851 75.1%
BoW-message 0.204 0.334 0.622  0.853 75.5%
CNN-title 0.365 0.391 0.652  0.865 77.0%
CNN-message 0.459 0.391 0.641 0.869 77.5%
RNN-title 0.401 0.344 0.665  0.863 77.0%
RNN-message 0.326 0.360 0.677 0.873 78.0%

Average 0.330 0.359 0.648  0.862

work, we hope to improve the accuracy of automatic classification
with a more comprehensive data set and optimized models.

4 ONGOING WORK

We are planning a larger survey of developers to collect pairwise
commit-comparison results and reasons from developers as the
ground truth (§2.3) for analysis and training. Such a data set will
help us construct the impact categories for non-structural analysis
and also allow us to experiment with more advanced machine
learning models: both context learning and L2R should improve
with more training data. We will open the data set for public use, to
hopefully stimulate collaborative efforts in this research direction.
Our current implementation only supports C/C++ and Java. We
are adding support for dynamic languages, such as Python and
JavaScript, which requires implementing static typing [1, 2].

5 RELATED WORK

PageRank-like algorithms have been used to portray developers [12,
18, 30] and their social relationships [4, 24, 29, 34]. Our DevRank is
a variant of PageRank that is adapted to reflecting the development
value. Effort-aware models [28, 31] consider the development effort
in software engineering, and different effort estimation schemes
have been proposed [9, 19, 36, 40]. A key difference of our work is to
additionally consider the effort that is saved, instead of merely the
effort that is spent, as we have seen in §3.2. Meanwhile, DevRank
can be extended to use a more advanced effort estimation scheme
(e.g., polynomial, churn). The framework and methodologies of our
work are orthogonal and remain applicable.

6 CONCLUSION

There are commercial, pedagogical, and stewardship reasons for
evaluating the value of individual code contributions to a large code
base. This task is difficult for developers to do manually, not only
because of the subjectivity inherent in the task but also because
few developers have a wide enough view of the entire project to
do so effectively and in a manner well-calibrated to their fellow
developers. To make the process both objective and amenable to
automation, we postulated that a given code contribution has both
structural and non-structural value and proposed a combination of a
PageRank-inspired algorithm and an impact coding scheme through
manual labels or a machine learning model trained from developer’s
artifacts. We hope this on-going research work will finally enable
and support an even stronger ecosystem of contribution-based
projects with a “long tail” of contributors as well as give better
insights into the relative strengths of contributors and code.
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